
Chapter 24

Blasius solution

24.1 Boundary layer over a semi-infinite flat plate

Let us consider a uniform and stationary flow impinging tangentially upon a
vertical flat plate of semi-infinite length (Fig. 22.1). Furthermore, assume that

the fluid is moving at the constant velocity U in the x direction in the half-space
x < 0 and that the flat plate is placed along the half-plane y = 0, x > 0 with

which the previous flow interacts.
On the basis of the solution for an impulsive flow over an infinite plate we

can suppose that the transition of the velocity field to a zero value along the
plate can take place in a thin boundary layer of thickness much smaller than the

distance from the origin of the plate.
Then, we can consider that the plate from a point in the vicinity of the

boundary looks like as if it were extended from −∞ to +∞. Therefore, we can

suppose that the horizontal velocity will depend on a dimensionless quantity
similar to (22.3), but with the substitution

t =
x

U
,

which represents the time during which the flow has felt the presence of the
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Fig. 24.1: The thickness of the boundary layer along a semi-infinite plate

increases with the square of the distance from the edge. For each quadrupica-

tion of the distance from the edge of the plate we have to double the distance

from the plate in order to find the same velocity. The vertical profile of the

velocity, shown in Fig. 22.2 is similar, but not equal, to the profile relative to

an impulsive flow over an infinite plate shown in Fig. 22.1.

plate. Thus, we can suppose that the solution will depend on the nondimensional
parameter

η = y

(

U

νx

)1/2

. (24.1)

Here the factor 2 has been omitted because it is no longer useful for the simplification
of the subsequent calculations.

Let us further suppose that the behavior of the flow near the edge of the plate,

were the previous arguments are no longer valid, is irrelevant for the behavior of
the flow far from it.

Indeed, the whole problem depends on two nondimensional parameters, the second
of which might be y/x. We assume that far from the origin this last parameter is
uninfluential.

The sum of these three hypothesis allow us to solve the problem far from the
edge with a very good approximation.

24.2 The equations of motion

If we consider a homogeneous fluid (which is not particularly restrictive within

the thin boundary layer), according to the equations of the horizontal momentum
for a stationary flow derivable from (18.11) and the two-dimensional continuity

equation derivable from (5.3) become

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

, (24.2)
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u
∂v

∂x
+ v

∂v

∂y
= −

1

ρ

∂p

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

, (24.3)

∂u

∂x
+
∂v

∂y
= 0. (24.4)

The continuity equation (22.4) can provide information about the magnitude
of the transversal velocity. Let us consider a rectangle including the boundary

layer with a long side resting on the plate a short side in the transversal direction.
We see immediately that the flow entering the rectangle in the horizontal direction

from the side closer to the beginning of the plate is greater than the flow exiting
from the other short side. In fact, as the flow moves far from the origin, the
plate manifests its presence by reducing the mean velocity of the flow parallel to

it inside the rectangle.

For continuity the transversal velocities along the long side of the rectangle
not in contact with the plate must give rise to an outgoing flow compensating

the reduction of the flow in the parallel direction. The transversal velocities
start from zero at the plate and increase with the distance from it, reaching the

maximum value along the farthest long side of the rectangle.

The global flow is thus moved away from the plate, even if it remains essen-

tially horizontal. This effect, which is of secondary importance, was completely
absent in the impulsive flow. The ratio between the mean transversal velocity

and the mean velocity parallel to the plate is of the order of the ratio between
the thickness of the boundary layer and the distance from the origin.

A comparison of the terms depending on the velocity in (22.2) and in (22.3)
shows that the latter are smaller than the former. The pressure term −(∂p/∂y)/ρ

must be of the same order of magnitude of the other terms of (22.3). But far
from the plate the pressure is constant. Hence, within the boundary layer, if

the variations of the pressure are small in the transversal direction y, they must
be small in the parallel direction x as well. It follows that the pressure term in

(22.2) can be neglected.

The system formed by (22.2) and (22.4) is a system of two equations in
two unknowns. It can be solved providing as a result the components of the
horizontal velocity. Then, (22.3) can be used to derive the small perturbations

in the pressure field.

On the other hand the second derivative of the parallel velocity in the transver-
sal direction ∂2u/∂y2 far from the origin and close to the boundary of the plate is

clearly much larger than the second derivative in the parallel direction ∂2u/∂x2,
so that the latter term can be omitted as well.
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This last hypothesis is surely not valid near the edge of the plate where the velocity
at y = 0 changes sharply from U to 0 when x varies from 0− to 0+.

Therefore, the equations of motion can be reduced in the form

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (24.5)

∂u

∂x
+
∂v

∂y
= 0. (24.6)

Further simplifications are impossible. At least one of the two nonlinear terms of

(22.5) must be important, in order to balance the viscous term, which obviously
cannot be negligible in the thin boundary layer. The problem in thus intrinsically

nonlinear.

Indeed, it is one of the simplest nonlinear problems encountered in fluid dynamics.

The boundary conditions are

u = 0, for y = 0, (24.7)

v = 0, for y = 0, (24.8)

u → U, for y → ∞. (24.9)

24.3 The Blasius equation

The second basic hypothesis discussed in section [22.1] can be summarize by
the expression

u = Ug(η), (24.10)

where η because of (22.1) can be written as

η =
y

δ(x)
(24.11)

with

δ(x) =

(

νx

U

)

1/2

, (24.12)

so that

∂η

∂x
= −

η

δ

∂δ

∂x
, (24.13)

∂η

∂y
=

1

δ
. (24.14)
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The continuity equation (22.6) allows us to write the two components of the
velocity by means of a streamfunction as in (E.1)–(E.2)

u = +
∂ψ

∂y
, (24.15)

v = −
∂ψ

∂x
. (24.16)

The momentum equation (22.5) becomes

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (24.17)

On the other hand the streamfunction can be expressed in the following form

ψ =

∫ y

0

u dy = δ

∫ η

0

u dη = δ

∫ η

0

Ug(η) dη = Uδf(η), (24.18)

where

g(η) =
df

dη
. (24.19)

From (22.16), (22.18) and (22.13) it follows that

v = −
∂ψ

∂x
= −U

(

f
dδ

dx
+ δ

∂f

∂x

)

= −U
dδ

dx

(

f − η
df

dη

)

. (24.20)

From (22.15) and (22.18) (or (22.10) and (22.19) we have

u =
∂ψ

∂y
= U

df

dη
. (24.21)

The derivatives of higher order of ψ can be obtained similarly

∂2ψ

∂x∂y
= U

dδ

dx

∂

∂y

(

f − η
df

dη

)

= −U
η

δ

d2f

dη2

dδ

dx
, (24.22)

∂2ψ

∂y2
=
U

δ

d2f

dη2
, (24.23)

∂3ψ

∂y3
=
U

δ2
d3f

dη3
. (24.24)
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Inserting (22.20)–(22.24) into (22.17), and noting that from (22.12)

U

ν
δ
dδ

dx
=

1

2
,

we arrive at
1

2
f
d2f

dη2
+
d3f

dη3
= 0. (24.25)

Thus, we have traced back our system of partial differential equations (22.5)–
(22.6) to an ordinary equation, although of the third order. This equation is

nonlinear, as expected. It is referred to as the Blasius equation after the name
of the author that discovered it. The boundary conditions to satisfy are

f = 0, for η = 0, , (24.26)

df

dη
= 0, for η = 0, , (24.27)

df

dη
→ 1, for η → ∞. (24.28)

The last condition (22.28) is (22.9) worked out through (22.10) and (22.19).
Condition (22.27) is a reworking of (22.7), always on the basis of (22.10) and

(22.19). Condition (22.26), instead, derives from (22.20), because for η = 0 the
first and the last terms vanish. This second term vanishes both because η = 0

and because of (22.27).

24.4 Numerical solution of the Blasius equation

An analytical solution in closed form uniformly convergent in the whole do-
main is not available. However, the equation can be solved numerically with the

wanted accuracy (Fig. 22.2).

To say that the solution depends on the ratio between the y-coordinate and
the root square of the x-coordinate implies that the thickness of the boundary

layer increases with x (Fig. 22.1). If we define such a thickness as the distance
at which the velocity differs for less than 1% with respect to the velocity U at
infinity, then we have

δl = 4.9

(

νx

U

)1/2

,
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Fig. 24.2: Blasius solution for a semi-infinite plate. The horizontal dotted

line indicates the thickness of the boundary layer, where the velocity is equal

to 99% of the interior velocity.

corresponding to η = 4.9. This confirms one of the basic hypotheses, i.e., that

the thickness of the boundary layer increases very slowly.

Problem 24.1 Establish the order of magnitude the terms present in the momentum
equation (22.5).

Comment. When y = 0 all the terms are evidently zero. Using the Blasius solution we
see that they increase progressively as we move away from the plate. This means that it
is impossible to assign an order of magnitude to the various terms of the equation valid
everywhere. The structure of the advective terms is of the kind −a, and a − b, with b
slightly greater than a and a > a− b. Although the second term is smaller than the first
one, to neglect it would only worsen the solution without any gain.

Problem 24.2 Evaluate the derivative of v with respect to y for y = 0.

Solution. From (22.20) we obtain

∂v

∂y
= −

U

δ

dδ

dx

∂

∂η

(

f − η
df

dη

)

=
U

δ

dδ

dx
η
d2f

dη2
.
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Therefore, for η = 0 we have ∂v/∂y = 0. Thus the transversal velocity increases very
slowly in the vicinity of the plate.

Problem 24.3 Evaluate the stress per unit area at the surface of the semi-infinite plate.

Solution. From the definition of surface stress

Ts = µ
∂u

∂y

∣

∣

∣

∣

∣

y=0

= µU
d2f

dη2

∣

∣

∣

∣

∣

η=0

∂η

∂y
= µ

U

δ

d2f

dη2

∣

∣

∣

∣

∣

η=0

' 0.332µ
U

δ
.

Comment. Since δ ∝ x1/2, then Ts ∝ x−1/2.

The velocity fields around a finite plate can be assumed as essentially similar
to those encountered in a plate of semi-infinite length. This depends on the fact

that the equations of motion are of parabolic type, so that what happens up to a
certain distance does not depend on what happens at a greater distance. Thus,

the total stress on a finite plate can be calculated integrating the tangential stress
of the Blasius solution over the sole length of the plate. This theoretical value

turns out to be in agreement with the experimental results.

Problem 24.4 Evaluate the total force F on the two faces of a plate of length l.

Solution. We can assume that the solution of the problem is the same we have found for
a semi-infinite plate between x = 0 and x = l. From the solution of problem [22.3] and
(22.12) we obtain

F = 2 × 0.332 ρU3/2ν1/2

∫ l

0

x−1/2dx = 1.328
(

ρµU3l
)1/2

.

Indeed, the Blasius solution breaks down at a certain distance from the origin.
It can be applied successfully to describe the field around a plate of finite length

or in the first part of a longer plate (the semi-infinite length being in any case
an unrealizable abstraction).

24.5 Flow between two parallel plates

Let us consider the stationary flow between two semi-infinite flat plates placed

in the positive half space. Let us suppose that the flow at the intake is uniform.
What we see is the formation of a boundary layer of increasing thickness with

the distance from the intake. The velocity profile, which is constant at the
intake, at a short distance is still almost constant in the central region between
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the two boundary layers. Then, at a greater distance, it becomes more and more
rounded because of the contribution of the transversal velocities generated within

the boundary layers, which, for continuity, give rise to an intensification of the
longitudinal velocity. At a certain distance the two boundary layers merge in a

single viscous flow with a velocity profile approaching the parabolic profile of the
Poiseuille flow between two infinite parallel plates considered in section [13.1].

Therefore, the Poiseuille solution for two infinite plates is no longer a simple

theoretical solution of a rather unrealistic character, but the asymptotic solution
observable in a flow between two plates of finite length. The dynamics of a pipe

of circular section of semi-infinite or finite length is similar.

It is possible to prove that the parabolic profile is reached at a distance equal to
0.08<, where the Reynolds number is referred to the half-distance between the two
plates. Thus, for < = 1 000 such ratio is equal to 80, and grows to 200 for < = 2 500.
Similar results hold for a pipe of circular section. The intake effects extend to a very
large distance in a viscous laminar flow.

24.6 Nature of the Blasius solution

The Blasius solution is based, in the present derivation, on three hypothesis

suggested by the observation or experimentally verifiable. The transition of the
velocity field to zero occurs in a layer so thin that it cannot be easily seen. We

have the impression that both in air and water the flow slides over the solid
surfaces without friction. Only the study of the laminar flows in capillary vessels

suggests that the boundary condition for a viscous fluid must be given by a zero
velocity. The extension of this law to every flow is not trivial.

The impulsive flow suggests the possibility of a similar solution far from the
edge of the plate. The assumption that the border of the plate cannot generate

effects able to propagate along the plate can be verified only a posteriori.
It is possible to find more accurate solutions of the boundary layer equations

by a series expansion approach. But the starting point of the mathematical

solution relies on an experimental support.

24.7 Historical notes and essential bibliography

The laminar boundary layer was discovered by Ludwig Prandtl in 1904, in the

context of complicated flows around three-dimensional bodies [43]. The solution
for the semi-infinite plate was obtained by Heinrich Blasius [4] in 1908.


